basal layers resulting in an infinite columnar unit along the c axis. In the $4 C$ type structure, the clustering is the complicated three-dimensional chain (Tokonami, Nishiguchi \& Morimoto, 1972). Thus the $3 C$ and $4 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ structures differ not only in the arrangement of vacancies but also in the shape of the Fe clusterings (Fig. 2).

The authors express their thanks to Drs K. Koto and T. Asai of this Institute for their helpful suggestions and discussions, and also to Dr H. Horiuchi for his support in experiments.

References

Bertaut, E. F. (1956). Bull. Soc. Fr. Minéral. Cristallogr. 79, 276-292.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Evans, H. T. (1970). Science, 167, 621-623.
Fleet, M. E. (1971). Acta Cryst. B27, 1864-1867.
Goodenough, J. B. (1962). J. Appl. Phys. 33, 1197-1 199.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Morimoto, N. (1978). Rec. Progr. Nat. Sci. Jpn (Science Council of Japan), 3, 183-206.
Nishiguchi, M. (1977). MS Thesis, Osaka Univ. (In Japanese.)
Okazakı, A. \& Hirakawa, K. (1956). J. Phys. Soc. Jpn, 11 , 930-936.
Tokonami, M., Nishiguchi, K. \& Morimoto, N. (1972). Am. Mineral. 57, 1066-1088.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.

Acta Cryst. (1979). B35, 724-725

Refinement of the Crystal Structure of Silicon Diphosphate, $\mathrm{SiP}_{2} \mathrm{O}_{7}$ AIV - A Phase with Six-Coordinated Silicon

By K.-F. Hesse
Mineralogisch-Petrographisches Institut der Universität Kiel, 2300 Kiel, Federal Republic of Germany

(Received 20 October 1978; accepted 23 November 1978)

Abstract

Synthetic $\mathrm{SiP}_{2} \mathrm{O}_{7}$ AIV, monoclinic, $P 2_{1} / n$, $a_{o}=4.713$ (1), $b_{o}=11.987$ (2), $c_{o}=7.628$ (2) $\AA, \beta=$ $91.20(2)^{\circ}, Z=4 ; R$ (unweighted) $=0.050, R$ (weighted) $=0.035 .\left[\mathrm{PO}_{4}\right]$ tetrahedra are linked in pairs to form $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]$ groups. Si is octahedrally coordinated, with a mean $\mathrm{Si}-\mathrm{O}$ distance of $1.766 \AA$.

Introduction. $\mathrm{SiP}_{2} \mathrm{O}_{7}$ was prepared by Liebau, Bissert \& Köppen (1968). $\mathrm{A} \mathrm{SiO}_{2} \cdot m \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ mixture was held for 64 h at 1223 K in a silica-glass ampoule.

The structure was solved by Liebau \& Hesse (1971) by means of multiple-film methods using $h k 0$ and 0 kl reflections only; $R(h k 0)$ was 8.7% and $R(0 k l)$ was 9.9%. The aim of the present work was to refine the structure from general $h k l$ reflections.

A crystal measuring $0.1 \times 0.06 \times 0.03 \mathrm{~mm}$ was used for data collection on an automatic Philips PW 1100 four-circle diffractometer with graphite-monochromatized Mo Ka radiation ($\lambda=0.7107 \AA$) and a $\theta-$ 2θ scan $\left(\theta_{\max }=30^{\circ}\right.$). The intensities of 2804 crystallographically independent reflections were measured; 608 of these had $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$ and were used in the subsequent refinement. The standard deviation, $\sigma\left(F_{o}\right)$, was estimated from the formalism presented by Stout \& Jensen (1968).

Lorentz and polarization corrections were applied, but no correction was made for absorption $\ \mu($ Mo $K \alpha)$ $\left.=1.251 \mathrm{~mm}^{-1}\right]$. The structure as determined by Liebau \& Hesse (1971) was proven using Fourier techniques and was refined by full-matrix least-squares analysis with the program ORFLS of Busing, Martin \& Levy (1962), starting with the atomic coordinates given by Liebau \& Hesse (1971). (The x coordinates of their Table 1 are incorrect and have to be replaced by $0.5-x$.) Isotropic refinement of the crystal structure

Table 1. Positional $\left(\times 10^{4}\right)$ and thermal parameters with standard deviations

	x	y	z	$B\left(\AA^{2}\right)$
	x	y	$z(3)$	
Si	$2195(4)$	$8505(2)$	$3474(3)$	$0.48(3)$
$\mathrm{P}(1)$	$7991(4)$	$5182(2)$	$1962(2)$	$0.35(3)$
$\mathrm{P}(2)$	$7203(4)$	$6970(2)$	$4483(3)$	$0.34(3)$
$\mathrm{O}(1)$	$7073(10)$	$5725(4)$	$3743(6)$	$0.44(8)$
$\mathrm{O}(2)$	$805(0)$	$4645(4)$	$2364(6)$	$0.60(9)$
$\mathrm{O}(3)$	$5788(10)$	$4350(4)$	$1412(6)$	$0.45(9)$
$\mathrm{O}(4)$	$8249(10)$	$6109(4)$	$651(6)$	$0.57(8)$
$\mathrm{O}(5)$	$6224(9)$	$6873(4)$	$6315(6)$	$0.34(8)$
$\mathrm{O}(6)$	$215(10)$	$7364(4)$	$4303(6)$	$0.53(9)$
$\mathrm{O}(7)$	$5153(9)$	$7624(4)$	$3379(6)$	$0.51(9)$

© 1979 International Union of Crystallography

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

[PO_{4}] tetrahedra	[SiO_{6}] octahedra							
$\mathrm{P}-\mathrm{O}$ distances					$\mathrm{Si}-\mathrm{O}$ distances			
$\mathrm{P}(1)-\mathrm{O}(1)$	1.575 (5)	$\mathrm{P}(2)-\mathrm{O}(1)$	(1) 1.596 (5)		$\mathrm{Si}-\mathrm{O}(2)$	1.786 (5)	$\mathrm{Si}-\mathrm{O}(5)$	1.759 (5)
$\mathrm{P}(1)-\mathrm{O}(2)$	1.500 (5)	$\mathrm{P}(2)-\mathrm{O}(5)$) 1.485 (5)		$\mathrm{Si}-\mathrm{O}(3)$	1.736 (5)	$\mathrm{Si}-\mathrm{O}(6)$	1.779 (5)
$\mathrm{P}(1)-\mathrm{O}(3)$	1.494 (5)	$\mathrm{P}(2)-\mathrm{O}(6)$	(7) 1.505 (5)		$\mathrm{Si}-\mathrm{O}(4)$	1.784 (5)	$\mathrm{Si}-\mathrm{O}(7)$	1.752 (5)
$\mathrm{P}(1)-\mathrm{O}(4)$	1.502 (5)	$\mathrm{P}(2)-\mathrm{O}(7)$) 1.491 (5)			Average	1.766	
Average	1.518	Average	1.519					
$\mathrm{O}-\mathrm{O}$ distances					$\mathrm{O}-\mathrm{O}$ distances			
$\mathrm{O}(1)-\mathrm{O}(2)$	2.440 (7)	$\mathrm{O}(1)-\mathrm{O}(5)$	5) 2.436 (7)		$\mathrm{O}(2)-\mathrm{O}(3)$	2.498 (7)	$\mathrm{O}(3)-\mathrm{O}(6)$	2.486 (7)
$\mathrm{O}(1)-\mathrm{O}(3)$	2.490 (7)	$\mathrm{O}(1)-\mathrm{O}(6)$	6) 2.492 (7)		$\mathrm{O}(2)-\mathrm{O}(4)$	2.520 (7)	$\mathrm{O}(4)-\mathrm{O}(6)$	2.528 (7)
$\mathrm{O}(1)-\mathrm{O}(4)$	2.477 (7)	$\mathrm{O}(1)-\mathrm{O}(7)$	7) 2.463 (7)		$\mathrm{O}(2)-\mathrm{O}(5)$	2.496 (7)	$\mathrm{O}(4)-\mathrm{O}(7)$	2.486 (7)
$\mathrm{O}(2)-\mathrm{O}(3)$	2.484 (7)	$\mathrm{O}(5)-\mathrm{O}(6)$	6) 2.522 (7)		$\mathrm{O}(2)-\mathrm{O}(7)$	2.527 (7)	$\mathrm{O}(5)-\mathrm{O}(6)$	2.511 (7)
$\mathrm{O}(2)-\mathrm{O}(4)$	2.484 (7)	$\mathrm{O}(5)-\mathrm{O}(7)$	7) 2.456 (7)		$\mathrm{O}(3)-\mathrm{O}(4)$	2.505 (7)	$\mathrm{O}(5)-\mathrm{O}(7)$	2.480 (6)
$\mathrm{O}(3)-\mathrm{O}(4)$	2.481 (7)	$\mathrm{O}(6)-\mathrm{O}(7)$	7) 2.466 (6)		$\mathrm{O}(3)-\mathrm{O}(5)$	2.475 (7)	$\mathrm{O}(6)-\mathrm{O}$ (7)	2.466 (6)
Average	2.476	Average	2.473			Average	2.498	
$\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles			$T-\mathrm{O}-T$ angles			$\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles		
105.0 (3)) 104.4 (3)		$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{P}(2)$	133.0 (3)		90.3 (2)	$\mathrm{O}(3)-\mathrm{Si}-\mathrm{O}(7)$	178.5 (3)
108.4 (3)	106.9 (3)		$\mathrm{Si}-\mathrm{O}(2)-\mathrm{P}(1)$	136.6 (3)		89.8 (2)	$\mathrm{O}(4)-\mathrm{Si}-\mathrm{O}(5)$	178.9 (2)
107.2 (3)) $105 \cdot 8$ (3)		$\mathrm{Si}-\mathrm{O}(3)-\mathrm{P}(1)$	159.1 (3)		89.5 (2)	$\mathrm{O}(2)-\mathrm{Si}-\mathrm{O}$ (6)	179.7 (3)
112.2 (3)	115.0(3)		$\mathrm{Si}-\mathrm{O}(4)-\mathrm{P}(1)$	141.9 (3)		91.1 (2)	Average	179.0
111.7 (3)	111.2(3)		$\mathrm{Si}-\mathrm{O}(5)-\mathrm{P}(2)$	$145 \cdot 2$ (3)		90.7 (2)	Average	
111.9 (3)) 112.6 (3)		$\mathrm{Si}-\mathrm{O}(6)-\mathrm{P}(2)$	$140 \cdot 9$ (3)		$90 \cdot 1$ (2)		
Average 109.4	Average 109.3		$\mathrm{Si}-\mathrm{O}(7)-\mathrm{P}(2)$	$143 \cdot 2$ (3)		90.0 (2)		
			Average	144.5		90.4 (2)		
						89.3 (2)		
						90.4 (2)		
						89.9 (2)		
						88.6 (2)		
						90.0		

Fig. 1. The projection on $y z$ of $\mathrm{SiP}_{2} \mathrm{O}_{7}$ AIV.
converged at R (unweighted) $=0.05$ and R (weighted) $=0.035\left\{R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right]^{1 / 2} /\left(\sum w F_{o}^{2}\right)^{1 / 2}, w=\right.$ $\left.1 / \sigma^{2}\right\}$.*

A list of positional and thermal parameters with estimated standard deviations is given in Table 1. Atomic distances and valence angles are shown in Table 2.

Discussion. The structure as described in detail by Liebau \& Hesse (1971) has been confirmed but the precision of the atomic coordinates has been improved. The $\left[\mathrm{SiO}_{6} \mid\right.$ coordination polyhedron deviates only

[^0]slightly from a regular octahedron. The distances and angles within the $\left[\mathrm{SiO}_{6}\right]$ octahedron agree with those found in other structures containing $\left[\mathrm{SiO}_{6}\right]$ octahedra. The $\left[\mathrm{PO}_{4}\right]$ tetrahedra are corner-linked in pairs to form $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]$ diphosphate groups. In addition, each $\left[\mathrm{PO}_{4}\right]$ tetrahedron shares three corners with three different [SiO_{6}] octahedra forming a three-dimensional framework of $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right.$] groups and $\left[\mathrm{SiO}_{6}\right]$ octahedra, as shown in Fig. 1. As in other phosphates, the $\mathrm{P}-\mathrm{O}$ bonds to the bridging oxygen, $\mathrm{O}(1)$, are notably longer than those to the terminal O atoms. The value of 133.0° for the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ valence angle is very close to the mean value (131°) reported by Liebau (1966) for other phosphates.

I thank Mrs R. Hardtke for helpful technical assistance. The computing was carried out at the Rechenzentrum der Universität Kiel.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Liebau, F. (1966). Fortschr. Mineral. 42, 266-302.
Liebau, F., Bissert, G. \& Köppen, N. (1968). Z. Anorg. Allg. Chem. 359, 113-134.
Liebau, F. \& Hesse, K.-F. (1971). Z. Kristallogr. 133, 213-224.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: Macmillan.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34104 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

